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ON THE STABILITY OF PROCESSES DEFINED BY STOCHASTIC

DIFFERENCE--DIFFERENTIAL EQUATIONS

H.J. Kushner

1. INTRODUCTION.,

In this paper we extend previous work (e.g. Kushner [1],
[2],[3]) on the stability of strong Markov processes with values
in a finite dimensional space, to processes defined by difference
differential It6 equations of the type (1-1). The extension is
analogous to the extension of the Liapunov stability theorems to
theorems on the stability of the solutions of ordinary difference-
differential equations, as, for example, presented in Hale [4].

Let C be the space of continuous functions on the real
interval [-r,0], r >0, and let x(t) Dbe a vector valued stochastic

process., Define the process x,, with values in C, by xt(e) =

t

2
x(t+6), 6 € [-r,0]. Let lx(t)l2 =2 x;(t) and thn = sup || x(t+6)],
e ,
6 € [-r,0]. Suppose x(t) satisfies the vector stochastic difference-

differential equation

ax(t) = f(xt)dt + g(xt)dz(t)

(1-1)
t t

x(t) = x(0) + [ f(xs)ds + [ g(xs)dz(s),
0 0

where x , f and g satisfy (Al)-(A3) or (A1), (A2) and (AL) of




Section 2, and z(s) is a vector valued normalized Wiener process
with independent components. Equations of the type (1-1) have been
studied by ItO and Nisio [5] and Fleming and Nisio [6]. Their
result, concerning existence, is stated in Lemma 2.1.

We are concerned with criteria, of the stochastic Liapunov

function type, which assure that the solution paths of (1-1) have
certain 'stability' properties; e.g., for some set R, we may want
to prove that x(t) -»R w.p.l., or (with initial condition X = x)
obtain an estimate of Px{supm>wtéo|x(t)l z €}, or prove that
%Jw&vﬁdxﬁﬂ z2e>0} »0 as ||x|] -0, or estimate

Px{sup V(Xt) z €] for a suitable real valued function V.

a>t20
Some definitions concerning stochastic stability are given in [1]-
[3]. Here, in lieu of stating definitions, we merely concern our-
selves with the properties the definitions imply, and establish
criteria for properties of the type just mentioned. Results con-
cerning first passage times and moment estimates, as well as
applications to control are also available, although our

attention here is confined to 'asymptotic' results., In addition to
the intrinsic interest in the problem attacked, an important motiva-

tion for the work is to provide a foundation for the stabilization

and control of processes, defined by stochastic differential (1t8)

equations, with controls depending on delayed arguments. Such delays
are often an unavoidable part of the control problem, Also, for

an example of a deterministic system which cannot be stabilized by




o A0 A me o0 BN G G WS ab me N = o et @s A =S an

a control depending on the state, but which can be stgbilized by a

control depending on delayed values of the state, see Krasovskii [T].
In Section 2 we derive some useful estimates concerning

the probébilistic behavior of the solution of (1-1). These are

used subsequently to establish stochastic continuity, the strong

Markov character of the x

y Pprocess, and some needed character-

izations of the weak infinitesimal operator of the X, process,
Sections 3 and L4 establish the strong Markov nature of Xy 5 and
corresponding stopped processes, respectively. Section 5 gives

some results on the weak infinitesimal operator. In Seétion 6,

these results are used to prove some stability theorems, and examples
appear in Section 7. The stability results depend onAstochastic
continuity, a formula of Dynkin ([8], Theorems 5 and 6 and Corol-

lary ) and super-martingale theorems. Unfortunately, in order

to make explicit the first property and to apply the latter results'
much of the analysis in Sections 2-5 is needed, As in the deterministic
case (Hale fh]), the natural process to deal with seems to be Xy
(rather than x(t)), since ,then, much of the theory of Markov processes

can be applied.




2, PROPERTIES OF THE SOLUTION OF EQUATIONS (1-1).

Let fi and gij be the components of the vector and
matrix valued functions f and g, respectively, and define the
vector and matrix norms as |f|2 = Z fi R |g|2 =2 gij , respectively.
Throughout, K and Ki are positiv: real number::those values

may change from theorem to theorem,

Al, fi(-) and gij(-) are continuous real valued

functions on C.

A2, 1In the interval [-r,0], x(t), is continuous w.p.l.

and independent of z(s)-z(0), s 2 0, and E|x(t)|u < =,

A3, There is a constant M < « and a bounded measure

u on [-r,0] so that, for ¢ and V € C,
(2-1) | £(@)-£(¥)| + | @) -g(¥)] = [ |9(6)-%(6)] an(6)
| £(0)| + |e(0)| =M

Note that (A3) implies (A3').

A3'. There is a constant M < » and a bounded measure
(also denoted by u) on [-r,0] so that |£(0)]+

| g(0)] = M and

(o]
(2-2) | 2(@)-2(¥)| 2+ &(@)-e(9)| 2 5 [ |9(0)-w(8)] Zan(e) .
-7
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Eventually (A3) (or (A3')) will be replaced by the local

condition (Ab)(or stronger condition (AL')).

(A4)((A4?)) For each positive real number p, there is
a bounded measure My on [-r,0] so that, for
l¥l e and ||| =p,(2-1)((2-2)) is valid with

W, replacing . Also, | £(0)] +| &(0)] = M < =,

LEMMA (2-1): (See Itd and Nisio [5], Section 5, or Fleming and

Nisio [6], for proof.) Suppose (Al) to (A3). Then

there is a continuous solution to (1l-1) w.p.l. with

Elx(t)f+§yeyt for some Yy <o, x(s) is independent

of the collection z(t)-z(s), for all t Z s 2 0.

LEMMA (2-2): Assume (Al) to (A3). For initial condition x = x_,
Em—— —— —_— [e]

the stochastic integral

t
wi(0) = 2 gy xazy(s)

is a martingale and

B max lw; ()% = (2D Blwy(D)]®
(2-3)

T
E max |w'(t)w(t)| s 4Ew'(T)w(T) = 4 [ E[g(xt)ledt.
T2t20 - o]




PROOF. By Lemma 2-1 and (AB), the integral on the right side of
(2-3) exists and is finite, Then, since x(t) and X, are non-
anticipative, the wi(t) are continuous martingales (Doob [9],

IX, Theorem 5.2) (2-3) is the continuous parameter version of

(Doob [9], VII, Theorem 3.k4).

THEOREM 2-1; Assume (Al) and (A3). Let =x(t) and y(t) be solu-

tions to (1-1) corresponding to initial condition X, =

x and y_ =Y, resp., where x and y satisfy (A2).

Then

(2-4) E TI:z§O|X(’C)-Y(t)|2 s K{EIX(O)—V(0)12+I EIX(G)-V(G)lzdu(G)},

where K depends only on T, and the u and M of (A3),

and is bounded for bounded T. The solution of (1-1) is

unique in the sense that, if x = X, satisfies (A2), then

any two solutions with bounded second moments must coincide

W.D. 1.

REMARK. The right side of (2-4) depends only on the initial data.

PROOF. (2-4) implies the uniqueness. From

t t
x(t)-y(t) = x(0)-y(0) + [ (£(x)-£(y))ds + [ (&(x,)-e(y ))az(s),

t T
and (2-3) and the bound max |/ k(s)dsl2 sT [ kg(s)ds, we obtain
tsT - o -0

E T W D T ) B e
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2 T s
B max | x(t)-y(t)|? = X B x(0)-3(0)| Z+k,7E f] £(x )-2(v,)| Zas
T2t20 o)

T 2
+ KB [ [e(x)-ely,)| "as .
(o)

Now (A3 ) gives

E max | x(t)-y(t)|° s KzElx(o)-y(O)l2
(2-5) T2t20

T o] o
+ K, [ds /[ E| x(s46)-y(s+6)| “au(8) .

By separating out the contribution of the initial condition x-y,

(2-5) can be written as

2
E X | x - <
Tg;J (£)-y(£)] " = A+
(2-6)

0

T
+ X, [ as | E| x( 5+6)-y(5+8)| “au(e),
o m(-r,-s)

where m(-r,-s) = max(-r,-s) = -min(r,s) (both r and s are

non-negative) and

r m(-r,~s) ‘
(2-7) AL = K2E|x(0)-y(0)|2+ K, [as [ £g+edu(9),
A, = Bl x(s)-y(s)] %

To evaluate the right side of (2-6), we first evaluate A which,

by (2-6), satisfies, for t =T,
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t o
(2-8) A=A+ K [ ds [ AL odu(8) .
o m(-r,-s)
Define U = variation of p and B = max At (which is finite,

Tzt20
by Lemma 2-1), and

2

Uantn UPKEt B
Qn(t) = Ai(l+UK2t + oaee *+ : } + :
n. n.

By (2-8), 4 = Ql(t). By induction, it is easy to show that

A = Q (t). Thus, since B <,

(2-9) NS e .

After substituting (2-9) into (2-6),it is easy to see that (2-4)

holds for some finite K independent of x and y. Q.E.D.
THEOREM 2-2: Assume (Al) to (A3). Then
2_ ° 2 2
(2-10) B max | x(t)-x(0)| "= KTE(1+] (|=(6)] 4 x(68)-x(0)| “)au(e)},
T=t=0 -1

where K depends onlyon T and p and M, and is

bounded for bounded T. Also, with x € C fixed,

(2-11) |Ex(h)_x(o)-hf(xo)l = o(h)

(2-12) | B(x(B)-x(0))(x(n)-x(0))* -hg(x )e' (x )| = o(h) .
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PROOF. By (A3'),

| £e ) “Hl x| ¥ 5 2l 2 )-2(x)| %2] el )-ex )] °
+ 2 5(x )| % + 2l e(x)] ®

o

= K [1 + [ | x(s40)-x(6)] “an(0) + [ | x(6)| “an(e)]

S K1 + [ | x(s+6)-x(0)] “an(6) + f (| x(6)-x(0)| *+

+ 1 x(0)] %)au(e)]
Thus, from
t t
x(t)-x(0) = [ f(xs)ds + f g(xs)dz(s)

and Lemma 2-2, we get

t T
E max |x(t)-x(0)|2 s KsE max | f f(xs)ds|2+ K5f Elg(xs)|2ds
T2t20- Tzt20 o o

T 2 T 2
< K5T / Elf(xs)l ds + Ky / Elg(xs)l as
(o] (o] . ’

T o
g_Kh[T+T2+f ds {EIx(s+6)-x(0)|2+|x(6)-x(0)|2+|x(e)lg]du(e)] .
o] =T

Separating out the contribution of the initial condition gives
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E max lx(t)-x(O)l2
T=2t20

5 T m(-r,-s)
S K, [T+17+T f E(lx(e)l 24| x(0)- x(0)| % Yau(e)+/asf E| x{ s+6)-x(0)| “du(6)

(2-15) o -r
T o 5
+ [ as | E| x(s+6)-x(0)| “ar(e)]
o m(-r,-s)
T o
s KTo + K¢ [ as [ s+ed“(9)
o m(-r,-s
where & = E|x(s)-x(0)|2 and

(1 + ] E(Ix(0)]® + | x(6)-x(0)| %)an(e) .

Now, proceeding as in Theorem 2-1, we have (t =7T)

t o)
<
B, S B Kt + Ky [ as [ s+edu(9)
o m(-r,-s
and
K6Ut
(2-14) 8, = BrKcte .

Substituting (2-14) into (2-13) yields (2-10).
To prove (2-11), fix x € C. Then (2-10), the continuity

of x(t) for t € [- r,O], and (A3') imply E max Hxh-x H -0

h=zt=0
and max Elf(x )-£(x )l -0 as h - 0. This result, with the
h=t20
evaluation

aOEE TEE S E N 2N E G E S R O O B e O B
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h
|Ex(h).x(o).hf(xo)l2 =|E[ (f(xs)-f(xo))dsl2
. -0

h
£h [ E| f(xs)-f(xo)lgds s v

proves (2-11).

2
hgigoElf(xs)-f(xo)l )

Equation (2-12) is proved in a similar way.

11
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3. MARKOV PROPERTIES OF THE PROCESS Xy o

Let & be tpe collection of open sets in C (with topology
determined by the norm ||x| = sup |x(6)], 6 € [-r,0]), and B the
Borel field over ¥. The triple {C,jf,i}} is a topological state
space (Dynkin [8], Appendix). Let x, the initial condition for
(1-1) satisfy (A2). We suppose that all probability measure spaces intro-
duced in the sequel are complete with respect to whatever measures

are imposed on them. Let { denote the probability sample space,

and w the generic element of . Define ﬁ: and ﬁ: as the

least o-fields on @ over which x(s), -r £ s £t and x(s),

t-r £ s £ 1, are measurable, resp, for fixed X, = X € C. Let PX

be the probability measure on M = éEé ﬁz . Consider the col-

lection of w sets S defined by, for some y € C, some € >0,

AN

and any O = s t

)

S ={w: lxs-yH <€ ={w: sup|x(s+0)-y(8)] <€} .

-r=0=0

~

Such § are in M: and, in fact, for any I' € B, the set (wsx € T,

s £1t, is contained in the least sub o-field of ﬁ: containing

all such 8 (for all € >0, y € C). Denote this sub o-field by

M: . Since x(t), t = -r, continuous w.p.l., so is x

£ t =20,

(in the topology induced by the norm ||x||). Thus we have

LEMMA 5-13 Suppose (Al) to (A3) and fix x, =x €C. EBach x

s?




(3-1)

(3-2)

(3-3)

THEOREM 3-1: Assume (A1) to (A3) and let x_ = x € C. Then x

PROOF.

1

0 £s21%, is a random variable on {Q, M: PJ} to

{c,%, B}, and X, 1is continuous w.p.l. x, is measurable

on {Q, N

X X
£ Px]’ where N,

q whose expectation exists we have (by virtue of unique-

= M: n ﬁ:. For any function

ness--Theorem 2-1) w.p.l.

Ela(x, )M = Bla(x )N}, szo.

t+s t+s

In particular, (2-4) can be written as (w.p.l.)

E( max | x(t)-y(t)| %) =
pztzq

K{| x(0)-y()| 4/ | x(0r8)-y(0+0)| Zan(6))

and similarly for (2-10), (2-11) and (2-12); e.g., (2-11)

can be extended to (where o(h)/h -0 w.p.1l. as h —-0)

| B(x(t+0)| 1) -x(0)-he(x,)| = o(n) .

t

is a continuous strong Markov process on the topological

state space {C,%, B} with killing time ¢(w) = « w.p.l.

The last statement merely says that the solution paths are

defined for all t < » w,p.l. To prove the Markov property we check
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the conditions of Dynkin [8], p. 77-80. For each fixed initial
condition x € C, the process x(t) is defined by Lemma 2-1, and

Xy by Lemma 3-1.

To prove the Markov property, we have only to show that
(i): the function p defined by p(t,x,T) = P (x,€ '}, for arbitrary

I €, is B measurable and (ii): PX{X € I‘leé]: p(h,x, ,TI') w.p.1l.

t+h t?

(i) is true, since by Theorem 2-1, p(t,x,T') is continuous on C.,
The 'Markov' property (ii) is also true, by Theorem 2-1 and Lemma
5-1, since the paths x(s), s 2 t, (or X, S Z t) of (1-1) are

uniquely determined by the initial condition x, w.p.l.

t

To prove that x, 1is a strong Markov process, it suffices

t
to prove that (Dynkin [8], Theorem 3.10) if a(x) is bounded and
continuous on C, then Exa(xt) = B(x) 1is continuous in x. (EX
is the expectation operator corresponding to Px’) Let Xy yz

correspond to fixed initial conditions x,yn. Then th-yEH -0 w.p. 1,
t 2 0, as ||x-y"| =0 (Theorem 2-1). Then, the ® function o defined
by |a(xt)-a(y:){ = o (®) goes to zero as n - =, Since a (w)

is bounded, we have Ecz,n — 0 which implies that B(x) is con-

tinuous in x. Q.E.D.
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L, STOPPED PROCESSES (and (AL) replacing (A3))

Let R be some bounded open set in C and 7
inf{+t: xt¢ Q). If x, € Qy all 0=t<w set T=wo, T is a
Markov time (Dynkin [8], Theorem 10.2); i.e., {w: T = t} € M:.

~ -

Define the stopped process Xy

t K
1
>
<
fiA
A

e
]
ke
.
C"
V
A

§£ is also a strong Markov process (under (Al)-(A3)) with infinite

escape time, hence, the paths of ;t do not depend (w.p.l.) on

the values of f and g (of (1-1)) outside by R..
Now, suppose that (A3) is replaced by (A4). The solution

to (1-1) is defined as follows., Let R, = {x:

|x| < n}. Define
functions fn, gn equal to f,g in R and satisfying (Al) and
(A3) for p = e Define xn(t) (or XE) as the solution to

(1-1) corresponding to fn, gn. Let Tﬁ = inf {t: XE ¢ Rn] =

. n n .
inf {t: |x(t)| =z n}. 1If x €R, then T >0 w.p.l. and x is a
strong Markov process for each nj hence, w.p.l., x: = xﬁ

for m>n and t = 7. Let £ =1im 7 . The solution to (1-1),

under (AL), is defined as the process x, which equals XE up
to Tn’ for all n., If £ < o with a probability &, the escape
(or killing time) is finite w.p.&. X, (with the appropriate

probability space) is a strong Markov process with killing time

E.
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For most of the sequel, we will be concerned only with

the paths x, only up to a time T = inf{t:xt £ Q) for some

t
bounded open set Q, and only the properties of f,g in @ will
be important. Since, in applications, (A%) occurs frequently,

we suppose that (A4) holds (in lieu of (A3)) and use that above

interpretation of the solution of (1-1).
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5. THE DOMAIN OF THE WEAK INFINITESIMAL OPERATOR.
A real valued function F on C 1is said to be in the
domain of K, the weak infinitesimal operator, if the limits
EXF(xt)-F(x)

lim = q( X)
t -0 t

lim E_g(x.) = q(x)
t >0 X T

exist pointwise in C. Then, we write q(x) = AF(x). Write KR

for the weak infinitesimal operator of ;t =X, stopped at

T = inf (t: xt¢ R} for an open set R.

LEMMA (5-1): Let (A1),(A2) and (A4) hold for (1-1). Let A be

the weak infinitesimal operator of a process (%(t))

satisfying (1-1) with ?,@ replacing f,g and satisfing

(A1)-(A3). Let f = f, & = g in the bounded open set R.

f and & can be arranged outside of R so that “ﬁt” =

K<ow Let F be continuous and bounded on bounded sets.

Then, if F GAY(K), and AF = q is bounded on bounded

sets, the restriction of F to R is in ,Q?(KR) and on

~

R, AF = AF.

PROOF. That f and & can be arranged so that HﬁtH <K is

Ay

clear, since we can always find f, g, satisfying the other con-

ditions and which are identically zero outside of some bounded open
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set containing the closure of R.
Next, let x € R and suppose F €;CP(K) and AF = q.

Define T = inf{ts xt¢ R}. Then™

Ea(®,)-Ea(%) = BIX _,(a&)-a(x))] =0
or

Ea(%,) - a(x) ,

as t -0, since q(zt) and q(ﬁt) are uniformly bounded and

X,r < t—iO w.p.1l. by (2-10). To complete the proof we need only

verify that [EXF(gt)-F(x)]/t - g(x). But, since [EXF(ﬁt)-F(x)]/t -

¥* %
a(x), it suffices to verify that

EXF()'Et)-F(x) - lim EXF(%‘,C)-F(X)

0 = lim
t t t t
- 1im BXr < ¢ PF(RY)-F(X o))
t t

For 1< y< 2, the evaluation (6-4) and Chebyshev's

inequality imply that B (X /t)Y >0 as t -0. Also,

T>t

F(xt)-F(x is uniformly bounded. Then, Holders inequality

tﬂT)
implies that the last expression is zero. Q.E.D.
We have not been able to completely characterize the

domain of the weak infinitesimal operator of either the x, or

Xe <t is the characteristic function of the set {w: T < t},
and Q% is the x  process stopped at 7. '
*%

tNT = min(t,T).

ol SN0 TS OGN AP OGN O O AN N N N o B P A e B e
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§t process. For example F(x) = x(-a), r > a >0, is not necessarily
in ‘Lp(K), since x(t) is not necessarily differentiable. Basically,
we are able to study functions F(x) whose dependence on x(0),
for -r 2 6 <0, is in the form of an integral. The dependence
of F(x) on x(0) can be more arbitrary. Fortunately, the stochastic
analogs of the available and useful deterministic Liapunov functions
have this property. Theorems 5-1 and 5-2 give some results on the
weak infinitiesimal operator of ;t’ where w 1is some open bounded
set, T = inf{t:xte Q} and (1-1) is interpretated in the sense of
Sections 3 and 4, and (AL) is used. ((AL) is assumed since it

appears in applications). The proofs are only sketched, since they

involve only routine calculations.

THEOREM 5-1: Assume (Al),(A2) and (AlL) and x, =x¢€C. Let F(x) =

G(x(0)) have continuous second derivatives with respect

to x(0). Then F(x) ef(A;) and*

(5-1)  AF(x) = 16(x(0)) = alx) = 6 (x(0)£(x) + L
i,Jd

(x(0))o. .(x)
uiuj i

where 955 = E €ix85x .

Gu is the gradient with respect to the vector argument, and the
subscript uiuj denotes a second partial derivative, Recall that R

is a bounded open set.
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PROOF. To compute KRE it suffices to assume, by Lemma 5-1,

that (Al)-(A3) hold and ||xt|| < X for some sufficiently large
but finite K, and to compute AF for the modified process (denoted

also by Xt)' Define &x(0) = x(s)-x(0). Then

HE,G(x(£))-&(x(0))] = 5 GL(x(0))E,Bx(0)

(5-2) 5 L 6, , (%(0))E,x,(0))x,(0) +

1,3 17

%5 ZELG, , (x(0)+a(e)8x(0))-G, . (x(0))]ex;(0)8x,(0),
i, i i7]

where 0 £ a(w) £ 1 and ij(o) is the jth component of &x(0).
By (2-11) and (2-12), the limits (as s —0) of the first two terms
on the right side of (5-2) exist and as the first two terms on the
right side of (5-1). Now [Guiuj(x(0)+a(a96x(0))-Guiuj(x(o))] is
bounded and tends to zero w.p.l. as s — 0. Then, applying Schwartz's
inequality and the estimate (6-4) to the 374 term in (5-2) yields
that the term tends to zero as s —0.

Since we have assumed that thH £ K < o, and (Al), the f, and
Gij may be assumed to be bounded and continuous. Since, in addition,
Gu and Guiuj are bounded on bounded sets and Hxs-xH -0 w.p.1l.,

we have Exq(xt) - q(x) as t -0, Thus, by Lemma 5-1, F(x) e,ﬁg (AR).

THEOREM 5-2: Assume the conditions of Theorem 5-1 except that
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(5-3) F(x) = [ h(6)H(x(6),x(0))d6 .

ILet h be defined and have a continuous derivative on

some open set containing [-r,0}. Let H(q,B), HBi(a,B)

and HBiBj(a’B) be continuous in o and PB. Then

F(x) € {f(A;) and

(5-k) KﬁF(x) = q(x) = h(0)H(x(0),x(0))-h(-r)H(x(-r),x(0))

-f he(G)H(x(G),x(O))de + [ h(e)1H(x(8),x(0))ae ,

where the operator L is defined by (5-1) and acts on

H as a function of x(0) only.

PROOF. As in the proof of Theorem 5-1, we appeal to Lemma 5-1 and

suppose that thu £ K< o and (Al)-(A3) hold. Then, for small s,

E o)
Z [BF(x)-F(x)] = = [ n(6)[H(x(5+6),x(s))-H(x(6),x(0))1a6

E E o)
X

= 21 n(6-s)u(x(6),x(s))a6 - == | n(6)H(x(6),x(0))a0
(5-5)

oE
= /== [n(6-s)H(x(6),x(s))-h(6)H(x(6),x(0))]ae

+ = [ B n(6-5)H(x(6),x(s))de - %f-r SEXh(G-s)H(x(G),x(s))ds .

The last two terms tend, for each x € R, to the first two terms
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of (5-4), resp. (In fact the last integral is not random for
s £ r.) This is easily seen by virtue of the boundedness of H
(for ||x| s XK < »), the continuity of h and H and (2-10).

By a straightforward calculation similar to that in the
proof of Theorem 5-1, it is easy to shown that the first term of
(5-5) tends to the last two terms of (5-4).

That EXq(xt) - q(x) also follows easily from (2-10),
thH £ K < o, and the assumed boundedness and continuity of

properties of h, hgy, H and IH,

Theorem 5-3 and its Corollary are useful extensions of
Theorems 5-1 and 5-2, Their proofs are also straightforward computa-
tions and will not be given, ILoosely speaking, for Theorem 5-3, (see

statement of Theorem)

F(xs)-F(x)

S

A G = 1lim Gp(F(x))E, [ ]

R s = 0Q
2

) X 3

+ 1lim
s =20

The first and second terms correspond to the first and second terms

of (5-6), resp. The second term reduces to merely

E o
]_imo =/ h(G)[H(x(e),x(s))-H(X(G),X(O))]d9]2'GFF(F(X)) .

THEOREM 5-3: Let G be a twice continuously differentiable real

valued function of a real argument., Assume the conditioms

of Theorem 5-2. Then Fl(x) = G(F(x)) e‘at(KR) and
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LF (%) = G(F(x)EF(x) + 5 Gog(F(x)) B
(5-6)
B =/ [ n(e)n(e) T, (x(6),%(0))Hy (x(e),x(0))ay ;(x)a6ac.

-r -r i, ]

where the derivatives HBi are with respect to the

th

i component of the second vector argument of H(ogﬁ).

COROLLARY. Let F*(B) and F°(a,B), resp., satisfy the conditions

on the respective F's of Theorems 5-1 and 5-2. Then,

if G is twice continuously differentiable, Fl(x) =

o(F*(x)+7°(x)) edf (k) end

BP1(0) = Gp(FH(x)47°() ) (BgF(x) 4 P (x))
+ 5 Cop(FX(x)+F°(x)) B

b
B = i,chij(x)[ng(x(O))+ci(x)][Fﬁ

(0 s0,()]

Ci(x) = f h(e)Hﬁ-(X(e),X(O))de .

The differentiations F* and H are with respect to

B B

] i i
the ith component of x(0) (the second argument of the

functions).
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6. STABILITY THEOREMS.

Various definitions concerning stochastic stability
appear in [1],[3]. In lieu of definitions, we merely concern our-
selves with the properties, which the definitions codify, and which
appear in the Theorems, Theorem 5-1 is a generalization of Lemma
1 and Theorems 1, 2 of Kushner [3], Chapter 2, where the state space is

supposed to be Euclidean,

THEOREM 6-1: Let Xy be a right continuous strong Markov process

on a topological state space {C,%,B} with weak in-

finitesimal operator A. Let the norm Il generate.iﬁ

Let the non-negative continuous real valued function V(x)

be in (J(K). Let Q= {x: V(x) <q) and let 7=
inf{t: x. € Q}. Set T =o if X, € Q for all t < «,

Let AV(x) =k(x) =0 in Q. Then, for x =x€Q,

(B1) V(XtﬂT) = w, 1s a non-negative supermartingale
(B2) P { sup V(x) 2 q} = V(x)/q

o>t 20
(B3) V(xtm,) »vz0wp.l, v=qwp 21V(x)/q.

If, in addition, (i); k¥ is uniformly continuous on the

non empty open set R6 = {x: k(x) < 8}ﬂQ, for some 8 >0

and (ii); for all sufficiently large but finite Markov

times t, and all sufficiently small e,

P{ max |x-x]) 2€and x€Q, all r st} -0
* f+hzszt  © © r
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as h -0, wiformly in t for sufficiently large 1,

and any X € Q. Then

(B4) k(x,.) 20 w.p.l. (relative to Q.= {w: sup V(x,(w)) <a}).
t Q o>t20 v

PROOF. Fix the initial condition x =x_ € Q. Since V(x) € aﬁQ(K)
and TNt is a finite valued Markov time, Dynkins formula ([8],
Theorem 5,6 and Corollary) gives

Nt
(6-1) Exv(xtm)-v(x) =-E [ k(xs)ds £0.
(o]

(6-1) together with the fact that V(x) € AP(A) yields that

v( is a non-negative supermartingale (Dynkin, [8],

Xene) =Wy
Theorem 12.6). Then (B2) and (B3) follow immediately as properties
of non-negative supermartingales.

Let 0<5<® and Ry=(x: k(x) <8N Q. Let I (8,u,5) be
the indicator of the (s,w) set where k 2 & (for x = x) and

T
let ftn IX(S,GES)GS = TX(Ebt)° Then, by the facts that the left
T

side of (6-1) is bounded below by -V(x), and that V(x) 2 0, we
have EXTX(S,O) s V(x)/5. TX(S,t) is the total time that x,
spends in Q,-R8 before either t = +o (if T = ») or the first
exit time from Q (if T < =), Furthermore Tx(B,t) < » w,p.l.
and TX(S,t) -0 WoepP.l. as t — o,
Now, min{HX-y“, X € R6/2’ y € Q'RS} = €, Wwhere € >0

by (i). Define QQ = {w: x,€Q, a1l t <. P(QQ} z 1-V(x)/q
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by (B2). For each fixed positive h and vy, there is a tx(h,y)
so that t > tx(h,rj implies TX(S,t) S TX(S/E,t) < h with prob-
ability 2 1l-y. Let tx(h,7) be sufficiently large and h
sufficiently small so that the probability on the left side of

(ii) is less than 1. Suppose that there is a

finite Markov time t > tx(h,Y) for which x € Q-R8.‘ The prob-
ability of the event [Xte Q'RS’ Xt+a€ Q'R6/2 for some hz gz O
is no greater than 7y (relative to QQ). Thus, since Tx(Bl,t) >h
with probability 2 1-y, we conclude that the probability of never
as t -,

leaving R, in [t,») goes to 1 (relative to @

Q)

Since & 1is arbitrary, we conclude that k(xt) -0 w.p.l. (relative

o}

to Q Q.E.D.

Q)'
An apparant difficulty with the sets {x: V(x) < g}
defined in Theorem 6-1 is that they are not bounded for typical
cases (see e.g.,, the examples) and, hence, the characterization of
the weak infinitesimal operator is much harder than the work in
Section 5. This is also the situation in the deterministic case
(as in Hale [4]). However, in our examples (as well as in the
deterministic cases studied (Hale [4])), it turns out that if
X =xE€ (x3V(x) < g} C C, then there is a constant K independent
of x, sothat x| (for tzr) amd |xX(t)| (for t z0) are
no greater than K. In other words, up until the first exit time
from (x: V(x) < g}y |x(t)]s K < », (For examples, refer to
Section 7.) Since any initial xoe C 1is bounded, there is no

loss in generality in supposing that there 1s a bounded open set
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B, whose radius is K;, = > X, 2 K, so that, 1if X € Q =

{x:V(x) < g}NB, then thH £ K, wtil T = inf{t:x,€ Q). B can

always be made large enough to include any desired initial con-

dition which satisfies x € {x:V(x) < q}. The resulting boundedness,

besides not appearing to be & serions restriction, enables us to use

the results of Section 5.

THEOREM 6-2: Assume (Al),(A2) and (A4). Let V(x) be a contin-

E—— — —_—— — e ——
uous non-negative real valued function on C. Suppose

)

that (iii):there is a bounded open set B such that

]

x =x€Q={xsV(x) < qINB and sup V(x_ ) <q imply
c = s py
t>820

that x € Q, all 0<s<t, Let V(x) e A_Q(AQ) and

KQV(X) =-k(x) £0 in Q, and x € Q. Then (B1)-(B3)

hold, and P(QQ) z 1-V(x)/q. If k is uniformly con-
tinuous on Rg = {xsk(x) <€ 8} for some 5> 0, then

k(xt) -0 w.p.1l. (relative to QQ).

~ . . .
REMARK. TFor V(x) elp(AQ), it suffices, by the hypothesis and
Lemma 5-1, that V(x) € L0 (B) where A is the weak infinitesimal
operator of any modification of (1-1) with F = f, =g in Q

and which has uniformly bounded paths (where the bound is at least

the outer radius of B).

PROOF. Condition (iii) and Theorem 6-1 imply (Bl)-(B3). To
complete the proof we have only to show that (ii) of Theorem 6-1
is true. According to Lemma 5-1, it suffices to show this under

assumptions (Al)-(A3) and with the paths thH s K, for some
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finite K,. Condition (ii) is equivalent tec

(6-2) P ( max  max | x(t+s40)-x(t+0)| 2 €, x € Q, u st} 20
hzs20 -rs6=0

as h -0, uniformly in t for large t, and any € > 0. (6-2)

is majorized by

(6-3) sup P_{ max  max |x(r+s+8)-x(r+0)| = €}
x€q * hzs20 -rses0

= sup P { max |x(r+6+s)-x(r+9)| = € for some 6 € [-r,0])
XEQ h2s20

rg? c
sup P_{ max | x(nh+s)-x(nh)| 2 5} .
n=0 x€Q  hZs20

A

To complete the proof, we need the evaluation

N - t+h u t+h o) 2
E max | (¢ )0} s (E e )l 48) K (] Blox)|as)
(6-4)
s Kuhg s

where K) 1is independent of h,t and x, for x € Q. In (6-4),

we used the assumption (Lemma 5-1) that the paths “Xt“ are bounded
(hence |f| and |o| are bounded) the first line of (2-3) and
Bey(1) = 3(Bi5(1))7 (see (2-3)).

By (6-4) Chebyshev's inequality
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PX{ max | x(nh+s)-x(nh)| z E-] < E max | x(nh+s)-x(nh)|
hZs20 2 h2 520

(e/2)"

16Kuh2 K5h2
€2 GZ)+

1A
|

for x € Q. Then each entry of the right hand sum of (6-3) is

bounded by K5h2/€u and, hence, the sum is bounded by (r+h)K5h/eu,

which completes the proof.
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7. EXAMPLES.

EXAMPLE 1. Let x(t) be scalar and

dx(t) = -ax(t)dat-bx(t-7)dt+ox(t-p)dz(t).

O

(1-1)  Wx) = 220)/2 + a [ $2(8)ae + B | X(6)as, az o, £ = o

-1 -0
Fix g <w, and x_= X € C. Let = = K,. Note that, if
V(xs) < g for all s < t, then xe(s) <2q for all 0= s<t, and
Izl £ max W2q , K,) for all s <t. Then, any bounded open set
B, containing the origin and with radius at least max( 2g, K,),
satisfies the condition on the set B of Theorem 6-2. Let
Q = {x: V(x) < q}NB. Then V(x) e(xO(Ké) by Theorems 5-1 and

5-2, and

KQV(x) = xg(O)(-a +a + B)-bx(0)x(-7)
(7-2)

2
~af(1)-p(-p) + G x(-p)

Suppose that there is an a >0 and B >0 so that the quadratic

form (7-2) (in x(0), x(-T), x(-p)) is negative definite. Then,

by Theorem 6-2,

(7-3) PX{ su.p2 V(Xt) z q) = V(x)/a .
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Since q 1is arbitrary, we also have, w.p.l.

V(Xt) -V
k(xt) -0

x, = {xsx(t) = x(t-p) = x(t-7) =0} .

t
where v(w) is some random varisble. Hence x, =0 w.p.1l.

For small noise, the estimate (7-3) can be improved.
Let B =p =0 for ease of computation, Let F(x) = e)»V(x), where A > 0.
F(x) € AQ(KQ) (for any sufficiently large B) and, by the Corollary

to Theorem 5-3,

RF(x) = W()RU(x) + "; 7(x)-x2(0) 0>
= AF(x)(x°(0)(-a + -‘; sa %"?-axe(-r)
-bx(0)x(-T)} .
If
(7.) a(a-"—;--’%z-a) 2 b2/

and then F(x) is a Liapunov function

(7-5)
= e>"( V( X) 'q) .

Clearly, as A increases, within the constraint (7-4), the estimate

(7.5) improves.

Gl G D N BN o5 @GP N G O A D B SN P BB S . )\
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EXAMPIE 2, Let

dxl(t) x2(t)dt

dx,(t) [-h(xl(t)) + {rf(e)g(xl(t+6)-xl(t))de}dt

+ c(xt)dz(t) .

Suppose that w # O implies that h(w)w >0 and g(w)w >0
and let h(0) = g(0) = o(0) = 0. Let £(6),g(w) and h(w) have
continuous derivatives and suppose that (Al), (A2) and (AL)
hold. Define .

(7-6)  V(x) = %5(0)/2 + H(x,(0))+] £(8)6(x,(8)-x,(0))a0

where
w

Hw) =2 [ h(A)ar » o as |w] -

and
w
G(w) = g(A)axr .
o
Fix q<w® and x =xg¢€ C. Let %l = K,. Note that,
2
if V(xs) <q for all s <t then xg(s) < 29 and H(xl(s)) <gq
for all 0 = s <t and, hence, for 0 = s <1,

5 1/2
HXSH s max (K,(2q + max [lxl| : H(xl) =q}) } = K.

il B N D S B A0 D D N A B B B D B B Es 7 -
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Any bounded open set B, with radius at least Kl and which
contains the origin, satisfies the conditions on the B of

Theorem 6-2, Then, V(x) GaCP(KQ) and Theorems 5-1 and 5-2

yield
BV(x) = %(0)(-(xy(0))+]_£(6)a(x,(0)-x(0))ae)
+ 0%(x)/2 + n(x,(0))x,(0)
(7-7) - 2(-r)6(xy(-r)-x,(0))

(o] (s
[ £45(6)6(x,(6)-x,(0))ae- [ £(6)e(x,(8)-x,(0))x,(0)d6
=T -r

+

(o]
o2(x)/2 + | £,(6)6(x,(8)-x,(0))a0-£(-r)G(x,(-r)-x,(0)).
-r

To complete the analysis, in analogy to the method of Hale [4],
suppose that f(6) >0, fe(e) £ 0 and fe(p) < 0 for some

p € [~-r,0], and that, for some 7y >0,

o*(x)/2 = £(-)6(x,(-1)-x,(0)) & ~¥E(-x)6(x)(-7)-x,(0)).

Note that, by continuity, fe(e) <0 for p-B < 6 < p+y, for some

@ >0, B >0, Then-

- )
AQV( x) s {ie( 8)aG( xl( 9)-xl(0) )d6-vf(-r)G( xl( -r) -xl( 0))s=o.



(7-8) P( sup_ V(xt) z q) = V(x)/a .

Since q is arbitrary, Theorem 6-2 implies that k(xt) -9

w.p.l., and that V(x converges w.p.1l. Equation (7-8) will be use-

+)

ful in the sequel, for it says that the paths x,_ are uniformly

t
bounded with a probability as close to one as desired. Note that
G(xl(t-r)-xl(t)) -0 w.p.l. implies that xl(t-r)-xl(t) -0 w.p.l.

We now show that x(t) -0 w.p.l. Since k(xt) -0 w.p.l.,

-p+Q-€ '
/ G(xl(t+6)-x (t))ae »o
1

-p-p+€
w.p.l., for 0 < € < min(q,B). Thus, using the positive definite-
ness of G, and the boundedness of the paths,

o

[ G(x,(t+6)-x.(t))d6 -0

7 1 1
(7-9)

lexl(t+9)-xl(t)|d9 -0

w.p.l., as t =0, for any finite T. Also, using (7-9) and the

fact that V(x) - v(w) 2 0 w.p.1l., we have, w.p.l.
(7-10)  x3(£)/2 + H(xy(t)) = v(w) 2 0,

Now integrating the defining equations between t-s and s gives
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v t o
4)-(0-8) = ] () auefa (8 (o (we8) oy (0)
(7-11)
t
+ [ c(xu)dz(u)

t-s

t
(7-12) xl(t)-xl(t-s) = { x2(u)du .

Using (7-9), and fhe boundedness of the paths, the second term
on the right of (7-11) goes to zero WeP.l, as t — =, for any

s > 0. Also, (7-9) and (7-12), together with the stochastic
continuity of x2(u) (Theorem 2-2), imply that xl(t)-xl(t-s) -0
w.p.l. for any finite s, Then using this fact and stochastic
continuity, (7-10) implies that x;(t)-xe(t-s) -0 w.p.1l. The
latter fact implies, via (7-12), that x5(u) =0 w.p.l. as

t -, Finally,(7-11) gives

t t
(7-13) -f h(xl(u))du + [ c(xu)dz(u) -0

tes t-s
w.p.1l. Equation (7-13), together with the fact that xl(u) is
asymptotically constant over time intervals of fixed length (i.e.,
xl(t)-xl(t-s) -0 w.p.1l., for all s >0 as t — ») implies that

h(xl(u)) -0 w.p.l., and, hence, that x(t) -0 w.p.l.
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